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METHODS OF SEARCH FOR SOLVING POLYNOMIAL EQUATIONS 

By Peter Henrici* 

Eidgenössische Technische Hochschule 

• Zürich, Switzerland 

Dedicated to D. H. Lehmer on his 65th birthday 

Abstract 

The problem of determuilng a zero of a given polynomial with guaranteed 

error bounds, using em amount of work that can be sstlnated a priori,  Is 

attacked here by means of a class of algorithms based on the idea of systematic 

search.    Lehmer's "machine method" for solving polynomial equations is a 

special case.    The use of the Schur-Cohn algorithm in Lehmer's method Is 

replaced by a more general proximity test which reacts positively if applied 

at a point close to a zero of a polynomial.    Various such tests are described, 

and the work involved in their use is estimated.    The optlmallty and non- 

optimallty of certain methods, both on a deterministic and on a probabilistic 

basis, are established. 

Key words 

polynomials, 7,exos, proximity test, covering, search algorithm, work 

function, optimal search, optimal covering, Schur-Cohn algorithm,  convergence 

function,  linear convergence. 
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I 
• 1. Introduction 

■ In 1961 D. H. Lehmer [6] proposed a "ratchine method" for solving poly- 

nomial equations. Hie algorithm was guaranteed to approximate a zero of any 

■ given complex polynomial with an arbitrarily small error. The amount of 

work necessary to compute a zero to a given precision could be estimated a 

■ priori. 

• In the present paper we shall describe a class of algorithms for poly- 

nomial zerofindlng which contains Lehmer*s method as a special case.    Our 

¥ algorithms borrow from Lehmer's method the basic idea of enclosing zeros 

In disks of decreasing radius, and of covering disks containing a zero by 

It smaller disks.    However,  Instead of using a special procedure to determine 

whether or not a given disk contains a zero of a polynomial, the algorithms 

discussed here merely require a "proximity test" (§2) which reacts positively 

If applied at a point close to a zero of the given polynomial.    Very simple 

such proximity tests exist, and as a consequence some of our algorithms are 

arithmetically simpler than Lehmer's method (§3). 

Tho convergence of the general search algorithm Is established (§^), 

and the maximum amount of work necessary to determine a zero to a preasslgned 

accuracy Is estimated (§5). 

Among the class of all proximity tests, we then identify a subclass for 

which   the   convergence of the resulting algorithms Is linear.    Among these 

tests, the classical Schur-Cohn test (which forms the basis for Lehmer's 

method) Is shown to enjoy a certain property of optlmality (§6).   We finally 

I* discuss the best covering strategy If coverings by disks of constant radius 

are used.    From a deterministic point of view, the best strategy consists 

I In covering a disk of radius    r    by eight disks of radius    cur ,   where 
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^ « (1+2 cos 2TT/7)' ■ O.'iUjOU . From a probabilistic point of view, 

if coverings by disks of variable radius are permitted, Lehmer's original 

covering is slightly better, although not optinwl. 

Besides Lehmer's paper, the present study was inspired by the methods 

of search used in the constructive proofs of the fundamental theorem of 

algebra due to Brouwer [?, U] and Rosenbloom [10]. 

I 

i 

2.    Proximity tests 

For positive integers   N ,    let   P«   denote the class of all monic 

polynomials of degree   N   with complex coefficients. 

/ \       N J N-l p(z) = z   + a^z       + ... + a0 , 

whose zeros Q1 ,    Co » ••• » CM satisfy |t | < 1 » i = ! > 2 , ... , 

N . It is our objective to study a class of algorithms for solving the 

following problem: Given any peP  and any g > 0 , to construct a disk 

D of radius c which contains a zero of p . The algorithms to be 

discuseed are uniformly convergent on PN , in tho following sense: The 

amount of work necessary to construct D is bounded by a quantity which 

depends on E and N , but not on the Individual polynomial p . 

The basic tool of the algorithms to be described is a proximity test 

T = T(r) , which can be applied to any polynomial peP» at any point z 

such that  |z | < 1 , and which the polynomial either passes or fails. The 

test must be such that it is passed at all points z sufficiently close to 

a zero, and failed at all points sufficiently far away.  (There may be an 

in-between region where the test may be passed or failed.) The parameter 

r regulates the difficulty of the test. The  smaller r is, the more 

difficult it becomes to pass the test. 

2 
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n *' Speaking fomally, a teat T(r) is called a proximity teat if there 

F exist two positive functions ^ and f , defined on some Interval 

0 < r < r. and having the following properties: If p Is any polynomial 

jj In PN , and If Q   Is any zero of p , then for all re(o,rJ 

p (l) P passes T(r) at all points z such that |z | < 1 and 

n I« " Cl < ♦(r) ; 

11 (11) p falls T(r) at all points z such that |z| < 1 and 

0 

|z - Cl > »(r) . 0 

The above evidently implies that j)(r} < f(r) ; we do not require that 

; ^ = f , We postulate that T(r) becomes arbirrarily difficult to pass for 

r -» 0 , i.e., 

(ill) lim t(r) * 0 . 
r -* 0 

We furthermore require 

(iv) f is continuous and strictly monotonically increasing. 

The functions 4 and ♦ «re cslled, respectively, the inner and 

outer convergence function of the test T(r) . 

The following test, to be denoted by T, , may serve as a first example 

of a proximity tost: 

" p passes T^r) at z " <    „, |p(z) | < r . 

mmimtMammmimmmammmmcmmmttmmimmmmmtmmMmamitmimmmmm* mi »»n ■ »■II«IMIIHIHIH>II 
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To show that this test has the required properties for   0 < r < 1 ,    let 

N 
P(Z) -  n (z - c) 

i«i       ^ 

If   p   falls the test at   z ,    then 

N 
|p(s)|-   n    |z - Ci^r 

1=1 1 

Hence for every   1 , 

•• 

N 
\z- 1iA>r   n    |z ^r1- 

Since |C4 | < ! >  lz| 5 ! > every factor of the product on the right Is 

at least 1/2 , and we find that 

-N+l |z - Cj^"" xr , i = 1 , ... , N 

-N+l Hence ^(r) cannot be failed if |z - q | < 2   r for some 1 , and (i) 

is true for 

-N+l 
4(r) = 2-^r . 

If, on the other hand,    p   passes    T, (r)   at   r ,    then 

N 

1=1 1   " 

_^* 
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and it follows that 

o 
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o 
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0 
I 

for at least one index   1 .    Thus the test cannot be passed If 

|z - Cj > «'1'N   for all   i ,   and \»e find that (ii) is true for 

♦(') « r l/N 

(By considering a polynomial with a single zero of multiplicity N , we 

see that (ii) is not true for any smaller function f .) It is clear 

that f has the properties (iii) and (iv). 

Two tests are called equivalent if they are defined on the same domain 

of r and if they produce identical results for all polynomials p at 

all points z and for all values r . 

Example; The test T1 is equivalent to a test which is declared 

2   2 
passed if and only if |p(z)| < r . 

Two proximity tests T and T* are called similar if there exists 

an increasing function r* mapping [Oji^J onto an interval [0»rA] such 

that the test T(r) is equivalent to T*(r) ■ T(r*(r)) . Similar tests 

thus differ only in the choice of the parameter. It is clear that the 

similarity of tests, too, is an equivalence relation. 

Example; The test T, is similar to the test T*(r) which is passed 

if and only if |p(z) | < r . Convergence functions for TJ are ^(r) = 

2-N+1rN and tfr) - r . 

By (iv), every proximity test is similar to a test with outer con- 

vergence function ^(r) ■ r . 

5 
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J. The search algorithm 

We require the notion of an e-coverlng. If e is any positive number, 

and if S is any set in the coroplex plane, an e-covering of S is any 

system of closed disks of radius < e whose union contains S . The covering 

is said to be centered in S if the midpoints of the covering disks belong 

to S . The construction of a minimal e-covering of a given bounded set 

(i.e., a covering containing the least number of disks) can raise intricate 

questions of elementary geometry. Of course, one can always use coverings 

whose centers form a square or hexagonal grid. 

Let pcP.. » let T be a proximity test, and let {q } be a mono- 

tonic sequence of positive numbers converging to zero such that q« = 1 . 

We shall describe an algorithm for constructing a sequence of points {z. } 

such that each of the disks 

11 
] 
1 
1 
1 
1 
1 

Dk={Z:  |z-zj<qk) 

k = ü , 1, 2,... , contains at least one zero of p . 

Let z0 = 0 . Then D0 certainly contains a zero, for it contains 

all zeros. The algorithm now proceeds by induction. Suppose we have 

found a point z. - such that D. , contains a zero. To construct z. , 

we cover the set D. , D D0 with an e.-covering centered in it and 

apply a test T(r. ) at the "enter of each covering disk. The parameters 

t  and r.  are chosen such that the following two conditions are met; 

(A) The test is passed at the center of each disk of the covering 

which contains a zero. 

(B) Any point at which the test is passed is at a distance < qk 

from a zero. 
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Condition (A) is satisfied if   t   < 4(0  •    Condition (B) is satisfied fck = 

If   ^(r ) < q    .    Thus both conditions are fulfilled if 
k' = ^k 

rt = ♦' (O » 

(1) 
-1, 

cv ' ^rv) 3 ♦(♦ (rJ) ' 

where ^  denotes the inverse function ol ^ . 

At least one of the covering disks contains a zero, since D. , contains 

one, and since all disks are contained in DQ . Thus by (A), the test 

T(r.) is passed at least once. We let z.  be the first center at which 

the test is passed. There is no assurance that the disk of radius ek 

surrounding z.  actually contains a zero, but by (B), the disk D.  does. 

The whole algorithm thus may be summarized as follows: Let ZQ = 0 . 

Having constructed z. , , cover the set D. , fl D0 by an r -covering 

centered in it, and apply T(rk) at the center of each covering disk, where 

e.  and r.  are given by (l). Let z.  be the first center which passes 

the test. 

Provided that identical systems of converings are used, the above 

algorithm remains unchanged if the test T is replaced by a "similar" 

test T* . 

k.    Convergence 

By construction, the centers z.  of successive disks D.  satisfy 

|z.+1 - zk| < % > where q -» 0 , This in itself does not imply the 

convergence of the sequence {z. } . Nevertheless, there holds 

THEOREM 1. The sequence {z. } converges. and its limit is a zero of p . 

..     ■ ■ ■  - -■ ■ 



^^^^^^^^^^mm^mmmm—m— 

I, 

: 

• ■ 

H 
1 

: 

Proof, Let 

6 » min \t   - Q 

be the minimum distance between distinct zeros of p . Let m be an integer 

such that 2a < 6 . Let n > m . The disk D,  contains a zero, say Q,  . 

The disk D. ,  likewise contains a zero, say Q.  . From 

it follows by the monotonicity of the sequence {a } that 

'! ICi-'jI^ + Vl^n*« 

and hence that Q* = Q*  • Thus for all n = m ,  |z • C* I *» Q. > Proving 

that 

-p iim z = Cj • n  'i 
» n -» OB 

5. Amount of work 

We measure the amount of work required to approximate a zero with an 

error < e by estimating the number of applications of the test T required 

to construct the first disk D.  such that its radius q.  is less than e . 

For reasons of simplicity we assume until further notice that the centers 

of the covering disks always form a square grid. 

8 
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D 
D 

0 
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• 

The area of D ,    is va,   • ^ * square ^-covering, the centers 

of the covering disks must be not more than «/JT e_ apart. Neglecting 

boundary effects, approximately 

2 
n Vl 
2  2 

n 

diaks of radius e  are thus required to cover D , . (Working with a 
m m-i 

hexagonal grid, the constant p could be replaced by rr» .) Within 

the same degree of approximation, this also is the maximum number of appli- 

cations of the test to proceed from z , to z . . 
m-i     m 

For the given sequence {q. } and for c > 0 , let k(e) denote the 

'( 
smallest k such that qv < e • By the above, the total number of appli- 

cations of the test necessary to approximate a zero with an error < c does 

not exceed a quantity of the order of 

(2) w(T,{qkJ,e) =? 2  ^ • 
msl      em 

We axiomatically define the above function w as the work function cf tt^e 

search algorithm based on the proximity test T and the sequence {q, } . 
■ 

The work function does not change if the test T is replaced by a similar 

test T* . 

From the fact, that w does not depend on p it already follows that 

the search algorithms described earlier are uniformly convergent in the 

sense described earlier. 

I 
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Example. For the test T, , choosing a geometric mode of subdivision 

(cik
=5<l » 0<q<l, k = 0, 1, 2,...) we have in view of (J(r) = 

a-W+1r. ♦(r)=r1/N 

i/.-I/ \v  o-K+1 n 

hence 

./-n    f ki    ^      TT 02N-2 k;^    2m-2-2mN      _ wd^lq  },e) = 2 2 ^     q ~ CM q 
m=l 

(2N-2)k(c) 
N 

(E -♦ 0) , where 

.2N-2 

q -q 

I 
I 
I 
I 
I 
1 

For the determination of a zero of a polynomial of degree 10 with an error 

< 10  , working with q = ö (which requires k = 20 ) the function w 

397    120 
yields an upper bound of approximately 2  TT = 10    applications of the 

test. Since on the average we can't expect to do much better than use one 

half of the maximum number of tests, a search algorithm based on T, 

certainly is not practical. 

6. Proximity tests with linear convergence functions 

Suppose the convergence functions of a proximity test T are linear, 

(5) ^(r) = ar , f(r) = br 

(0 < a < b) .  Then by (l), 

10 
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«m* ♦(**1(qm)) 'ISn' 

and the work function (2) becomes 

0 
fl 
0 
n 

a 
0 
[] 

c 

(M 
2  k(c)  ql , 

w(T,{q.},e) =?T    ^ 2 K ^ a    m=l      q^ 

In particular,  If   q.   = q    , 

(5) w(T,{qk3,£) =-n|Tk(E)   ' 
2a q 

aad the work necessary to compute a zero to a given accuracy Is proportional 

to the number of decimals required.    This convergence behavior is known 

as linear convergence. 

We now shall give some examples of proximity tests with linear con- 

vergence functions.    For arbitrary   z    and   h ,    let 

p(z + h) = b0 + bjh + b2h2 + ... + b^" 

(bw = l)  .    It will be convenient to suppress the argument    z    in the Taylor 

coefficients    b.   . 
i 

6.1.    The test    T2 .    Let 

B = B(z) =   min 
l<k<N 

1/k 

The polynomial    p    is said to pass the test    Tp(r)    at    z    if and only if 

B(Z) < r  .    To determine the convergence functions of this test,  let 

11 
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(6) p =   min    \z - Q  \ . 
l<lc<N K 

The relations of Vieta iinply, as is well known, 

P < 

iA 
> k = 1 , ,.. , u , 

^N^A 
Since (k)  < N , this implies p < NB(2) . Hence if p > Nr , then 

B(z) > r , and p fails T2(r) at z . It follows that 

t(r) = Nr 

is outer convergence function for   T« .    On the other hand,  let   p   fail 

the test at    z .    Then    B > r   and hence 

< r -k 
,    k « 1 ,    2  ,   ...   ,  N . 

If p(z + h) = 0 and  (h | - p , the Taylor expansion shows that 

?*y-*$>.i 

and hence that   ^ > k •    I* follows that the test cannot be failed if 

P < 2 r »    i'e-> 

<f(r) = i r 

-..■i ■ . . 

is inner convergence function for   Tp . 



r* 
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Thus T, has convergence functions of the form (j); we note that 

— a 2N . In the numerical example considered earlier (N = 10 , 

e ■ 10  , 'Iv =! 2 ) > CO now furnishes an upper bound of some 50,000 

applications of the test. 

6.2. The test T, . The polynomial is said to pass T,(r) at z 

if and only if 

0 
E 
[ 
C 

lbol^   lbllr +   lb2lr2 + •'•   +   K'^  * 

Let    p   be defined by (6).    Then for some    h    such that     |h | = p   we have 

p(z + h) = 0  ,    hence 

N 
lbol^   KIP*   M"2  +  •••   +   KIP 

and p passes T,(p) . Thus ^»(r) = r is inner convergence function for 

this test. On the other hand, a theorem of ü. D. Birkhoff [2] implies 

that the test cannot be passed if p > (2 '  - l) r . Thus 

♦"' ■ ?7rr 

is outer convergence function.    For this pair of convergence functions, 

b 1 N      ,w        x 
I = 2!7ir7~I°ßT(    ^ * 

For a given sequence    {q. }  ,    and for linear convergence functions  (3), 

2/ 2 the value of the work function for a given c is proportional to b /a . 

13 
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For both tests T2 and T, this ratio is 0(ir) as N -^« . This 

situation is typical for any test that depends only on the absolute values 

|b. ( , for it is known [9, 1] that the maximum of the ratio of the largest 

and smallest absolute value which the smallest aero of a polynomial of degree 

N can have if the absolute values of the coefficients are fixed is procisely 

(2 '  - l)' .  It follows that smaller values of b/a can be achieved only 

with tests that do not merely use the absolute values of the Taylor coeffi- 

cients. 

6.3. The test T. . This test makes use of the sums 

(7) 
N 

K Ul      1 
K  =  i.  j   £.  <f  • • 

It is easily shown by means of a generating function argument that these 

quantities can be computed from the Taylor coefficients at z by means 

of the following recurrence relation: 

k = - b0 (kbk f s^ + S2bk_2 + ... + s^^^ , 

K=Xj  C)««»* 

Let    p   be defined by (6).    Then    |s. ( < Np'    ,    k = 1 ,    2 ,  ...   ,    and 

it follows that 

(8) P< JL 
s, 

1/k 
y K      =      X       j £)••• 

1 
! 

I 
ik 

atamm mm 
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Let 

1/k 
s «s   min 

l<k<N 

We say that   p   passes the test   T^(r)    at   z   if and only if   S < r .    It 

follows from (8) that 

♦(r) = r 

is outer convergence function for this test. Moreover, a rather deep result 

of Buckholtz [5] states that S < (2 + 2/r)p , where the numerical constant 

is beat possible. It follows that 

tfr) = (2 + 2^)"^ 

is inner convergence function.    For this pair of convergence functions, the 

ratio   b/a = 2 + 2J2'= l+.828ii    is independent of   N . 

6.U.    Sharp tests.    For a given sequence    {q. } ,    and for linear con- 

vergence functions    \   and    f ,    the value of the work function (^) for \ 

given    e    is a minimum for a test such that   b = a .    Without loss of 

generality it may be assumed that   b = a = 1 .    A test with convergence 

functions    ^(r) = ^(r) = r   will be called sharp.    A sharp test reacts 

positively if and only if the closed disk of radius    r    about the testing 

point    z    contains a zero.    Thus all sharp tests belong to the same class 

of equivalent tests. 

15 
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: There exist several realizations of sharp tests. They are based either 

on a conformal mapping of the disk onto the left half-plane, followed by the 

Routh-Hurwitz algorithm, or (more directly and efficiently) on the well- 

known Schur-Cohn algorithm ([8], p. 195) for counting the number of zeros 

in a given disk. Lehmer's method [6, 7], the first search algorithm of the 

type considered here, was based on the Schur-Cohn algorithm. 

In our numerical example (N = 10 , % = ^      » e = 10 ), (5) now 

yields a maximum of a mere 129 tests in an algorithm based on a p'uarp test. 

Due to neglect of boundary effects, the true maximum is somewhat higher; 

see below. 

The mere fact that the work function is smallest for the Schur-Cohn 

test does not in itself imply that this test defines the computationally 

most efficient algorithm, since the work function does not take into account 

the work required to carry out the test. In the absence of. rigorous results 

concerning the minimum number of arithmetic operations required to administer 

the various tests, precise results are difficult. Suffice it to say that 

all tests described in this section require, among other things, all Taylor 

coefficients at z . If performed by the Horner algorithm, their computation 

requires ^TT + 0(N) multiplications. The Schur-Cohn algorithm, if programmed 

in the superior fashion recommended by Stewart [11], requires smother 

Bt  + 0(N) multiplications and divisions, roughly the same as the computation 

of the sums s  required for T^ . Thus the Schur-Cohn test requires only 

about twice as much work as ÜU or T,, , and about the same as Tr . 

7. Optimum choice of {q ] 

Gupposo the search algorithm is based on a test with linear convergence 

functions (5). If E is given, for what choice of the sequence {q, j is 

the work function w(T,{q.},c) a minimum? 

16 
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We first answer this question when k(c) is prescribed. Let e > 0 , 

Let k be a given positive Integer, and let {q^} be any decreasing 

sequence such that cu - 1 , q». " i • Then, by the Inequality of the 

arithmetic and geometric mean« 

wCMc^he) 
m-1 ^ 

(C = 
2a 

> Ck \  Vi 
m-l q^ 

1/k 

Cke 
•2/k 

= w(T, {e^kJ,e) , 

and we have proved: 

THEOREM 2, JigJ e > 0 anä k > 0 be given. On the space of all 

monotonic sequences {a ) such that q^ = 1 and ^u = E » the work function 

(U) assumes its saallest value for the geometric sequence. «L. = e   » 

m a 0 , 1, 2,... . 

On the basis of this result, we new restrict our attention to geometric 

sequences, «L. - q (0<q<l)> and ask for the optimal value of q to 

achieve a given accuracy g , As a function of q and e > k(e} is now 

the smallest Integer such that q < e or 

k(e) - 

17 
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where    [x]    denotes the largest integer   < x .    Neglecting a fractional part, 

we thus have approximately 

w(T>{q
k},e)=C-Ii2ß_fi_ 

q    log q 

(C defined as above). By differentiation we easily find that the minimum 

-1/2 
of the above expression is attained for q = e ' « 0.60653 , and that the 

value of the minimum is 2 e C log - . 

1 Unfortunately, the above result does not indicate accurately the 

maximum number of tests to be applied, because the method of counting the 

covering disks underlying (2) becomes increasingly inaccurate (due to the 

neglect of boundary effects) if the ratio of the radii of the covering disks 

and of the disk to covered approaches 1 . To determine the exact maximum, 

j        let, for 0 < x < 1 , f(x) denote the minimum number of disks of radius 

x that are required to cover the unit disk. The function f is non- 

increasing, piecewise constant, and continuous from the right; no simple 

analytical expression for it exists. To proceed fx-om z  to z An in a 
m m+i 

1 

I 
search algorithm based on a test with linear convergence functions and on a 

I geometric sequence    {q }   requires covering a disk of radius    q     by disks 

of radius    r q       .    Hence,  if an optimal covering is used, at most   f(:- q) 

applications of the test are necessary.    The actual maximum number of 

tests to attain an error   < e    thus equals 

I 
I 

3 
J 18 
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We shall determine the minimum of W as a function of q for the Schur- 

Cohn test (a=b=l) . 

THEOREM 3. For sufficiently small fixed values of c , the function 

F(q,e) a W(l,l,q,e) assumes Its minimum at q = q^ = (l + 2 cos =—) 

The value of the minimum is 

^.e) = 8 
L log %. 

8 l0£ ^ 
Ü.8U96 

Proof.    We first determine the minimum of the function 

0W»f(4)^   . 

Let the points of discontinuity of f be, in decreasing order, 1 = xQ > 

, and let the constant value of f in the interval 

x_< x < x , be denoted by f (m = 1, 2, ...) . Then G(q) is increasing m =    m-1 m ^ 

in each of the intervals x < q < x , , and has a downward jump at the m = ^       m-l 

points   x    (m = 1, 2,   ...)   .    It thus is smallest where m 

X-» ^    Q       • • • 

I G(x ) = f 12S-1 x m   m log x m 
• 

is smallest. It can be shown that 

TT v-1 xm= (2 Q0S ^      >    fm
= m + 2   for m = 1 , 2 , 3 ; 

xm = (1 + 2 cos l^)"1 , fm = ni + 3 for m « U , 5 , 6 . 
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From these values and from the trivial estimate f(x) >x   it follows 

by computation that the minimum is assumed only at q^ =» x,. = 

(1 + 2 cos l^)'1 i o.hkSOk ,    and that it has the value 

The function F has the form F(q) = f(q)h(q) , where 

h(g) 
log 
log q 

The function h is piecewise constant, nondecreasing, and continuous 

from the left. We denote its points of discontinuity by 0 < h- < h. < 

h < ... .  Evidently, F(q) > G(q) , with equality holding if and only 

if q = h  for some n . Let n* be the smallest index n such that 
n 

h ^ On •  For sufficiently small values of E ,    the points h  are 

arbitrarily dense, hence h ^ < x. , and furthermore 

F(hnJ < G(xm)  ,   m ^ 5 . 

i 

It follows that   F(h #)    is the smallest value of   F .    If    h # o q0 , 

the Theorem is established.     If    h # > cu ,    the Theorem follows from the 

fact that    F(q)    is constant for    QQ < q < h #  . 

The optimal covering of the unit disk by 8 disks of radius    q^. consists 

of a disk centered at the origin,  surrounded by 7 disks centered at the 

points 

2TTik 

•Jk 
= R e k"0,    I ,  ...  ,    6, 
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where 

2 cos ~ 
R = ^- = 0.8019^ . 

1 + 2 ccs s2 

8.    Non-unlform converings 

So far in this study, it was assumed that the coverirv- of each disk 

D.     consists of disks of constant radius.    It  is a trivial matter to 

modify the definition of the basic search algorithm to permit coverings 

of variable radius and to extend the convergence theorem to this case. 

Also the upper bounds for the amount of work are easily adapted to extend 

to such non-uniform coverings. 

However,  the optimality considerations of section 7 strongly depend 

on the constancy of the radii of the covering disks, and it is far from 

obvious how they should be modified for non-uniform coverings.     Tt appears 

certain, however, that the methods using uniform coverings are not optimal 

in the class of methods using arbitrary coverings. 

The efficiency of an algorithm can also be Judged from a probabilistic 

point of view,  for instance by computing the average number   Z    of appli' 

cations of the test required to improve the accuracy of a zero by one 

decimal digit.     Here again the methods using uniform coverings are not 

optimal.    For the optimal method using uniform coverings determined in 

Theorem 5,  it can be shown that 

Z = 11.168 . 

21 
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1 

Lehmer's method covers the unit disk by a disk of radius   5-   centered at 

5 5 0 ,    and by   8   disks of radius   tx   centered    on a circle of rudius 9 . 

For this covering, if the sequence of surrounding disks is chosen optimally 

as suggested in [6], 

z = U.lUj . 

It can be shown that Lehmer's coverings is again not optimal, if only by 

the trivial reason that it has some built-in slack to counteract rounding. 

The detailed investigation of optimal non-uniform coverings must, however, 

wait for another paper. 
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